跳转到帖子

ISHACK AI BOT

Members
  • 注册日期

  • 上次访问

ISHACK AI BOT 发布的所有帖子

  1. Debian: CVE-2024-50343: symfony -- security update Severity 4 CVSS (AV:L/AC:M/Au:N/C:P/I:P/A:P) Published 11/06/2024 Created 11/19/2024 Added 11/18/2024 Modified 11/18/2024 Description symfony/validator is a module for the Symphony PHP framework which provides tools to validate values. It is possible to trick a `Validator` configured with a regular expression using the `$` metacharacters, with an input ending with `\n`. Symfony as of versions 5.4.43, 6.4.11, and 7.1.4 now uses the `D` regex modifier to match the entire input. Users are advised to upgrade. There are no known workarounds for this vulnerability. Solution(s) debian-upgrade-symfony References https://attackerkb.com/topics/cve-2024-50343 CVE - 2024-50343 DSA-5809-1
  2. SUSE: CVE-2024-10827: SUSE Linux Security Advisory Severity 9 CVSS (AV:N/AC:M/Au:N/C:C/I:C/A:C) Published 11/06/2024 Created 01/01/2025 Added 12/31/2024 Modified 01/28/2025 Description Use after free in Serial in Google Chrome prior to 130.0.6723.116 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) Solution(s) suse-upgrade-chromedriver suse-upgrade-chromium References https://attackerkb.com/topics/cve-2024-10827 CVE - 2024-10827
  3. Debian: CVE-2024-50345: symfony -- security update Severity 4 CVSS (AV:L/AC:M/Au:N/C:P/I:P/A:P) Published 11/06/2024 Created 11/19/2024 Added 11/18/2024 Modified 11/18/2024 Description symfony/http-foundation is a module for the Symphony PHP framework which defines an object-oriented layer for the HTTP specification. The `Request` class, does not parse URI with special characters the same way browsers do. As a result, an attacker can trick a validator relying on the `Request` class to redirect users to another domain. The `Request::create` methods now assert the URI does not contain invalid characters as defined by https://url.spec.whatwg.org/. This issue has been patched in versions 5.4.46, 6.4.14, and 7.1.7. Users are advised to upgrade. There are no known workarounds for this vulnerability. Solution(s) debian-upgrade-symfony References https://attackerkb.com/topics/cve-2024-50345 CVE - 2024-50345 DSA-5809-1
  4. SUSE: CVE-2024-9681: SUSE Linux Security Advisory Severity 8 CVSS (AV:N/AC:M/Au:N/C:N/I:C/A:P) Published 11/06/2024 Created 01/01/2025 Added 12/31/2024 Modified 01/28/2025 Description When curl is asked to use HSTS, the expiry time for a subdomain might overwrite a parent domain's cache entry, making it end sooner or later than otherwise intended. This affects curl using applications that enable HSTS and use URLs with the insecure `HTTP://` scheme and perform transfers with hosts like `x.example.com` as well as `example.com` where the first host is a subdomain of the second host. (The HSTS cache either needs to have been populated manually or there needs to have been previous HTTPS accesses done as the cache needs to have entries for the domains involved to trigger this problem.) When `x.example.com` responds with `Strict-Transport-Security:` headers, this bug can make the subdomain's expiry timeout *bleed over* and get set for the parent domain `example.com` in curl's HSTS cache. The result of a triggered bug is that HTTP accesses to `example.com` get converted to HTTPS for a different period of time than what was asked for by the origin server. If `example.com` for example stops supporting HTTPS at its expiry time, curl might then fail to access `http://example.com` until the (wrongly set) timeout expires. This bug can also expire the parent's entry *earlier*, thus making curl inadvertently switch back to insecure HTTP earlier than otherwise intended. Solution(s) suse-upgrade-curl suse-upgrade-libcurl-devel suse-upgrade-libcurl-devel-32bit suse-upgrade-libcurl4 suse-upgrade-libcurl4-32bit References https://attackerkb.com/topics/cve-2024-9681 CVE - 2024-9681
  5. Amazon Linux AMI 2: CVE-2024-9681: Security patch for curl (ALAS-2025-2724) Severity 8 CVSS (AV:N/AC:M/Au:N/C:N/I:C/A:P) Published 11/06/2024 Created 01/11/2025 Added 01/10/2025 Modified 01/30/2025 Description When curl is asked to use HSTS, the expiry time for a subdomain might overwrite a parent domain's cache entry, making it end sooner or later than otherwise intended. This affects curl using applications that enable HSTS and use URLs with the insecure `HTTP://` scheme and perform transfers with hosts like `x.example.com` as well as `example.com` where the first host is a subdomain of the second host. (The HSTS cache either needs to have been populated manually or there needs to have been previous HTTPS accesses done as the cache needs to have entries for the domains involved to trigger this problem.) When `x.example.com` responds with `Strict-Transport-Security:` headers, this bug can make the subdomain's expiry timeout *bleed over* and get set for the parent domain `example.com` in curl's HSTS cache. The result of a triggered bug is that HTTP accesses to `example.com` get converted to HTTPS for a different period of time than what was asked for by the origin server. If `example.com` for example stops supporting HTTPS at its expiry time, curl might then fail to access `http://example.com` until the (wrongly set) timeout expires. This bug can also expire the parent's entry *earlier*, thus making curl inadvertently switch back to insecure HTTP earlier than otherwise intended. Solution(s) amazon-linux-ami-2-upgrade-curl amazon-linux-ami-2-upgrade-curl-debuginfo amazon-linux-ami-2-upgrade-libcurl amazon-linux-ami-2-upgrade-libcurl-devel References https://attackerkb.com/topics/cve-2024-9681 AL2/ALAS-2025-2724 CVE - 2024-9681
  6. Gentoo Linux: CVE-2024-10826: QtWebEngine: Multiple Vulnerabilities Severity 9 CVSS (AV:N/AC:M/Au:N/C:C/I:C/A:C) Published 11/06/2024 Created 01/25/2025 Added 01/24/2025 Modified 01/28/2025 Description Use after free in Family Experiences in Google Chrome on Android prior to 130.0.6723.116 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) Solution(s) gentoo-linux-upgrade-dev-qt-qtwebengine References https://attackerkb.com/topics/cve-2024-10826 CVE - 2024-10826 202501-09
  7. Ubuntu: (Multiple Advisories) (CVE-2024-50096): Linux kernel vulnerabilities Severity 5 CVSS (AV:L/AC:L/Au:S/C:C/I:N/A:N) Published 11/05/2024 Created 12/19/2024 Added 12/18/2024 Modified 01/28/2025 Description In the Linux kernel, the following vulnerability has been resolved: nouveau/dmem: Fix vulnerability in migrate_to_ram upon copy error The `nouveau_dmem_copy_one` function ensures that the copy push command is sent to the device firmware but does not track whether it was executed successfully. In the case of a copy error (e.g., firmware or hardware failure), the copy push command will be sent via the firmware channel, and `nouveau_dmem_copy_one` will likely report success, leading to the `migrate_to_ram` function returning a dirty HIGH_USER page to the user. This can result in a security vulnerability, as a HIGH_USER page that may contain sensitive or corrupted data could be returned to the user. To prevent this vulnerability, we allocate a zero page. Thus, in case of an error, a non-dirty (zero) page will be returned to the user. Solution(s) ubuntu-upgrade-linux-image-5-15-0-1039-xilinx-zynqmp ubuntu-upgrade-linux-image-5-15-0-1056-gkeop ubuntu-upgrade-linux-image-5-15-0-1066-ibm ubuntu-upgrade-linux-image-5-15-0-1066-raspi ubuntu-upgrade-linux-image-5-15-0-1068-nvidia ubuntu-upgrade-linux-image-5-15-0-1068-nvidia-lowlatency ubuntu-upgrade-linux-image-5-15-0-1070-gke ubuntu-upgrade-linux-image-5-15-0-1070-kvm ubuntu-upgrade-linux-image-5-15-0-1071-intel-iotg ubuntu-upgrade-linux-image-5-15-0-1071-oracle ubuntu-upgrade-linux-image-5-15-0-1072-gcp ubuntu-upgrade-linux-image-5-15-0-1073-aws ubuntu-upgrade-linux-image-5-15-0-1078-azure ubuntu-upgrade-linux-image-5-15-0-127-generic ubuntu-upgrade-linux-image-5-15-0-127-generic-64k ubuntu-upgrade-linux-image-5-15-0-127-generic-lpae ubuntu-upgrade-linux-image-5-15-0-127-lowlatency ubuntu-upgrade-linux-image-5-15-0-127-lowlatency-64k ubuntu-upgrade-linux-image-aws ubuntu-upgrade-linux-image-aws-lts-22-04 ubuntu-upgrade-linux-image-azure ubuntu-upgrade-linux-image-azure-cvm ubuntu-upgrade-linux-image-azure-lts-22-04 ubuntu-upgrade-linux-image-gcp ubuntu-upgrade-linux-image-gcp-lts-22-04 ubuntu-upgrade-linux-image-generic ubuntu-upgrade-linux-image-generic-64k ubuntu-upgrade-linux-image-generic-64k-hwe-20-04 ubuntu-upgrade-linux-image-generic-hwe-20-04 ubuntu-upgrade-linux-image-generic-lpae ubuntu-upgrade-linux-image-generic-lpae-hwe-20-04 ubuntu-upgrade-linux-image-gke ubuntu-upgrade-linux-image-gke-5-15 ubuntu-upgrade-linux-image-gkeop ubuntu-upgrade-linux-image-gkeop-5-15 ubuntu-upgrade-linux-image-ibm ubuntu-upgrade-linux-image-intel ubuntu-upgrade-linux-image-intel-iotg ubuntu-upgrade-linux-image-kvm ubuntu-upgrade-linux-image-lowlatency ubuntu-upgrade-linux-image-lowlatency-64k ubuntu-upgrade-linux-image-lowlatency-64k-hwe-20-04 ubuntu-upgrade-linux-image-lowlatency-hwe-20-04 ubuntu-upgrade-linux-image-nvidia ubuntu-upgrade-linux-image-nvidia-lowlatency ubuntu-upgrade-linux-image-oem-20-04 ubuntu-upgrade-linux-image-oem-20-04b ubuntu-upgrade-linux-image-oem-20-04c ubuntu-upgrade-linux-image-oem-20-04d ubuntu-upgrade-linux-image-oracle ubuntu-upgrade-linux-image-oracle-lts-22-04 ubuntu-upgrade-linux-image-raspi ubuntu-upgrade-linux-image-raspi-nolpae ubuntu-upgrade-linux-image-virtual ubuntu-upgrade-linux-image-virtual-hwe-20-04 ubuntu-upgrade-linux-image-xilinx-zynqmp References https://attackerkb.com/topics/cve-2024-50096 CVE - 2024-50096 USN-7166-1 USN-7166-2 USN-7166-3 USN-7166-4 USN-7186-1 USN-7186-2 USN-7194-1 View more
  8. Red Hat: CVE-2024-50124: kernel: Bluetooth: ISO: Fix UAF on iso_sock_timeout (Multiple Advisories) Severity 6 CVSS (AV:A/AC:L/Au:S/C:N/I:N/A:C) Published 11/05/2024 Created 02/11/2025 Added 02/10/2025 Modified 02/10/2025 Description In the Linux kernel, the following vulnerability has been resolved: Bluetooth: ISO: Fix UAF on iso_sock_timeout conn->sk maybe have been unlinked/freed while waiting for iso_conn_lock so this checks if the conn->sk is still valid by checking if it part of iso_sk_list. Solution(s) redhat-upgrade-kernel redhat-upgrade-kernel-rt References CVE-2024-50124 RHSA-2024:11486
  9. Huawei EulerOS: CVE-2023-52920: kernel security update Severity 4 CVSS (AV:L/AC:M/Au:N/C:P/I:P/A:P) Published 11/05/2024 Created 02/12/2025 Added 02/11/2025 Modified 02/11/2025 Description In the Linux kernel, the following vulnerability has been resolved: bpf: support non-r10 register spill/fill to/from stack in precision tracking Use instruction (jump) history to record instructions that performed register spill/fill to/from stack, regardless if this was done through read-only r10 register, or any other register after copying r10 into it *and* potentially adjusting offset. To make this work reliably, we push extra per-instruction flags into instruction history, encoding stack slot index (spi) and stack frame number in extra 10 bit flags we take away from prev_idx in instruction history. We don't touch idx field for maximum performance, as it's checked most frequently during backtracking. This change removes basically the last remaining practical limitation of precision backtracking logic in BPF verifier. It fixes known deficiencies, but also opens up new opportunities to reduce number of verified states, explored in the subsequent patches. There are only three differences in selftests' BPF object files according to veristat, all in the positive direction (less states). FileProgramInsns (A)Insns (B)Insns(DIFF)States (A)States (B)States (DIFF) ------------------------------------------------------------------------------------------------------------------- test_cls_redirect_dynptr.bpf.linked3.ocls_redirect2987 2864-123 (-4.12%) 240 231-9 (-3.75%) xdp_synproxy_kern.bpf.linked3.o syncookie_tc 8284882661-187 (-0.23%)51075073 -34 (-0.67%) xdp_synproxy_kern.bpf.linked3.o syncookie_xdp8511684964-152 (-0.18%)51625130 -32 (-0.62%) Note, I avoided renaming jmp_history to more generic insn_hist to minimize number of lines changed and potential merge conflicts between bpf and bpf-next trees. Notice also cur_hist_entry pointer reset to NULL at the beginning of instruction verification loop. This pointer avoids the problem of relying on last jump history entry's insn_idx to determine whether we already have entry for current instruction or not. It can happen that we added jump history entry because current instruction is_jmp_point(), but also we need to add instruction flags for stack access. In this case, we don't want to entries, so we need to reuse last added entry, if it is present. Relying on insn_idx comparison has the same ambiguity problem as the one that was fixed recently in [0], so we avoid that. [0] https://patchwork.kernel.org/project/netdevbpf/patch/[email protected]/ Solution(s) huawei-euleros-2_0_sp11-upgrade-bpftool huawei-euleros-2_0_sp11-upgrade-kernel huawei-euleros-2_0_sp11-upgrade-kernel-abi-stablelists huawei-euleros-2_0_sp11-upgrade-kernel-tools huawei-euleros-2_0_sp11-upgrade-kernel-tools-libs huawei-euleros-2_0_sp11-upgrade-python3-perf References https://attackerkb.com/topics/cve-2023-52920 CVE - 2023-52920 EulerOS-SA-2025-1159
  10. Huawei EulerOS: CVE-2024-50115: kernel security update Severity 4 CVSS (AV:L/AC:M/Au:N/C:P/I:P/A:P) Published 11/05/2024 Created 02/12/2025 Added 02/11/2025 Modified 02/11/2025 Description In the Linux kernel, the following vulnerability has been resolved: KVM: nSVM: Ignore nCR3[4:0] when loading PDPTEs from memory Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits 4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't enforce 32-byte alignment of nCR3. In the absolute worst case scenario, failure to ignore bits 4:0 can result in an out-of-bounds read, e.g. if the target page is at the end of a memslot, and the VMM isn't using guard pages. Per the APM: The CR3 register points to the base address of the page-directory-pointer table. The page-directory-pointer table is aligned on a 32-byte boundary, with the low 5 address bits 4:0 assumed to be 0. And the SDM's much more explicit: 4:0Ignored Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow that is broken. Solution(s) huawei-euleros-2_0_sp12-upgrade-bpftool huawei-euleros-2_0_sp12-upgrade-kernel huawei-euleros-2_0_sp12-upgrade-kernel-abi-stablelists huawei-euleros-2_0_sp12-upgrade-kernel-tools huawei-euleros-2_0_sp12-upgrade-kernel-tools-libs huawei-euleros-2_0_sp12-upgrade-python3-perf References https://attackerkb.com/topics/cve-2024-50115 CVE - 2024-50115 EulerOS-SA-2025-1192
  11. Aruba AOS-10: CVE-2024-42509: Unauthenticated Command Injection Vulnerability in the CLI Service Accessed by the PAPI Protocol Severity 10 CVSS (AV:N/AC:L/Au:N/C:C/I:C/A:C) Published 11/05/2024 Created 01/16/2025 Added 01/14/2025 Modified 02/04/2025 Description Command injection vulnerability in the underlying CLI service could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba's Access Point management protocol) UDP port (8211). Successful exploitation of this vulnerability results in the ability to execute arbitrary code as a privileged user on the underlying operating system. Solution(s) aruba-aos-10-cve-2024-42509 References https://attackerkb.com/topics/cve-2024-42509 CVE - 2024-42509 https://csaf.arubanetworks.com/2024/hpe_aruba_networking_-_hpesbnw04722.json
  12. Huawei EulerOS: CVE-2024-50138: kernel security update Severity 4 CVSS (AV:L/AC:M/Au:N/C:P/I:P/A:P) Published 11/05/2024 Created 02/12/2025 Added 02/11/2025 Modified 02/11/2025 Description In the Linux kernel, the following vulnerability has been resolved: bpf: Use raw_spinlock_t in ringbuf The function __bpf_ringbuf_reserve is invoked from a tracepoint, which disables preemption. Using spinlock_t in this context can lead to a "sleep in atomic" warning in the RT variant. This issue is illustrated in the example below: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 556208, name: test_progs preempt_count: 1, expected: 0 RCU nest depth: 1, expected: 1 INFO: lockdep is turned off. Preemption disabled at: [<ffffd33a5c88ea44>] migrate_enable+0xc0/0x39c CPU: 7 PID: 556208 Comm: test_progs Tainted: G Hardware name: Qualcomm SA8775P Ride (DT) Call trace: dump_backtrace+0xac/0x130 show_stack+0x1c/0x30 dump_stack_lvl+0xac/0xe8 dump_stack+0x18/0x30 __might_resched+0x3bc/0x4fc rt_spin_lock+0x8c/0x1a4 __bpf_ringbuf_reserve+0xc4/0x254 bpf_ringbuf_reserve_dynptr+0x5c/0xdc bpf_prog_ac3d15160d62622a_test_read_write+0x104/0x238 trace_call_bpf+0x238/0x774 perf_call_bpf_enter.isra.0+0x104/0x194 perf_syscall_enter+0x2f8/0x510 trace_sys_enter+0x39c/0x564 syscall_trace_enter+0x220/0x3c0 do_el0_svc+0x138/0x1dc el0_svc+0x54/0x130 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x17c/0x180 Switch the spinlock to raw_spinlock_t to avoid this error. Solution(s) huawei-euleros-2_0_sp11-upgrade-bpftool huawei-euleros-2_0_sp11-upgrade-kernel huawei-euleros-2_0_sp11-upgrade-kernel-abi-stablelists huawei-euleros-2_0_sp11-upgrade-kernel-tools huawei-euleros-2_0_sp11-upgrade-kernel-tools-libs huawei-euleros-2_0_sp11-upgrade-python3-perf References https://attackerkb.com/topics/cve-2024-50138 CVE - 2024-50138 EulerOS-SA-2025-1159
  13. Debian: CVE-2024-50089: linux -- security update Severity 5 CVSS (AV:L/AC:L/Au:S/C:N/I:N/A:C) Published 11/05/2024 Created 11/12/2024 Added 11/11/2024 Modified 01/28/2025 Description Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. Solution(s) debian-upgrade-linux References https://attackerkb.com/topics/cve-2024-50089 CVE - 2024-50089
  14. Debian: CVE-2024-50095: linux, linux-6.1 -- security update Severity 5 CVSS (AV:L/AC:L/Au:S/C:N/I:N/A:C) Published 11/05/2024 Created 11/12/2024 Added 11/11/2024 Modified 01/28/2025 Description In the Linux kernel, the following vulnerability has been resolved: RDMA/mad: Improve handling of timed out WRs of mad agent Current timeout handler of mad agent acquires/releases mad_agent_priv lock for every timed out WRs. This causes heavy locking contention when higher no. of WRs are to be handled inside timeout handler. This leads to softlockup with below trace in some use cases where rdma-cm path is used to establish connection between peer nodes Trace: ----- BUG: soft lockup - CPU#4 stuck for 26s! [kworker/u128:3:19767] CPU: 4 PID: 19767 Comm: kworker/u128:3 Kdump: loaded Tainted: G OE ----------5.14.0-427.13.1.el9_4.x86_64 #1 Hardware name: Dell Inc. PowerEdge R740/01YM03, BIOS 2.4.8 11/26/2019 Workqueue: ib_mad1 timeout_sends [ib_core] RIP: 0010:__do_softirq+0x78/0x2ac RSP: 0018:ffffb253449e4f98 EFLAGS: 00000246 RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 000000000000001f RDX: 000000000000001d RSI: 000000003d1879ab RDI: fff363b66fd3a86b RBP: ffffb253604cbcd8 R08: 0000009065635f3b R09: 0000000000000000 R10: 0000000000000040 R11: ffffb253449e4ff8 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000040 FS:0000000000000000(0000) GS:ffff8caa1fc80000(0000) knlGS:0000000000000000 CS:0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fd9ec9db900 CR3: 0000000891934006 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? show_trace_log_lvl+0x1c4/0x2df ? show_trace_log_lvl+0x1c4/0x2df ? __irq_exit_rcu+0xa1/0xc0 ? watchdog_timer_fn+0x1b2/0x210 ? __pfx_watchdog_timer_fn+0x10/0x10 ? __hrtimer_run_queues+0x127/0x2c0 ? hrtimer_interrupt+0xfc/0x210 ? __sysvec_apic_timer_interrupt+0x5c/0x110 ? sysvec_apic_timer_interrupt+0x37/0x90 ? asm_sysvec_apic_timer_interrupt+0x16/0x20 ? __do_softirq+0x78/0x2ac ? __do_softirq+0x60/0x2ac __irq_exit_rcu+0xa1/0xc0 sysvec_call_function_single+0x72/0x90 </IRQ> <TASK> asm_sysvec_call_function_single+0x16/0x20 RIP: 0010:_raw_spin_unlock_irq+0x14/0x30 RSP: 0018:ffffb253604cbd88 EFLAGS: 00000247 RAX: 000000000001960d RBX: 0000000000000002 RCX: ffff8cad2a064800 RDX: 000000008020001b RSI: 0000000000000001 RDI: ffff8cad5d39f66c RBP: ffff8cad5d39f600 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8caa443e0c00 R11: ffffb253604cbcd8 R12: ffff8cacb8682538 R13: 0000000000000005 R14: ffffb253604cbd90 R15: ffff8cad5d39f66c cm_process_send_error+0x122/0x1d0 [ib_cm] timeout_sends+0x1dd/0x270 [ib_core] process_one_work+0x1e2/0x3b0 ? __pfx_worker_thread+0x10/0x10 worker_thread+0x50/0x3a0 ? __pfx_worker_thread+0x10/0x10 kthread+0xdd/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x50 </TASK> Simplified timeout handler by creating local list of timed out WRs and invoke send handler post creating the list. The new method acquires/ releases lock once to fetch the list and hence helps to reduce locking contetiong when processing higher no. of WRs Solution(s) debian-upgrade-linux debian-upgrade-linux-6-1 References https://attackerkb.com/topics/cve-2024-50095 CVE - 2024-50095 DLA-4008-1
  15. Huawei EulerOS: CVE-2024-50115: kernel security update Severity 4 CVSS (AV:L/AC:M/Au:N/C:P/I:P/A:P) Published 11/05/2024 Created 02/12/2025 Added 02/11/2025 Modified 02/11/2025 Description In the Linux kernel, the following vulnerability has been resolved: KVM: nSVM: Ignore nCR3[4:0] when loading PDPTEs from memory Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits 4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't enforce 32-byte alignment of nCR3. In the absolute worst case scenario, failure to ignore bits 4:0 can result in an out-of-bounds read, e.g. if the target page is at the end of a memslot, and the VMM isn't using guard pages. Per the APM: The CR3 register points to the base address of the page-directory-pointer table. The page-directory-pointer table is aligned on a 32-byte boundary, with the low 5 address bits 4:0 assumed to be 0. And the SDM's much more explicit: 4:0Ignored Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow that is broken. Solution(s) huawei-euleros-2_0_sp11-upgrade-bpftool huawei-euleros-2_0_sp11-upgrade-kernel huawei-euleros-2_0_sp11-upgrade-kernel-abi-stablelists huawei-euleros-2_0_sp11-upgrade-kernel-tools huawei-euleros-2_0_sp11-upgrade-kernel-tools-libs huawei-euleros-2_0_sp11-upgrade-python3-perf References https://attackerkb.com/topics/cve-2024-50115 CVE - 2024-50115 EulerOS-SA-2025-1159
  16. Ubuntu: (Multiple Advisories) (CVE-2024-50093): Linux kernel vulnerabilities Severity 5 CVSS (AV:L/AC:L/Au:S/C:N/I:N/A:C) Published 11/05/2024 Created 12/19/2024 Added 12/18/2024 Modified 01/30/2025 Description In the Linux kernel, the following vulnerability has been resolved: thermal: intel: int340x: processor: Fix warning during module unload The processor_thermal driver uses pcim_device_enable() to enable a PCI device, which means the device will be automatically disabled on driver detach.Thus there is no need to call pci_disable_device() again on it. With recent PCI device resource management improvements, e.g. commit f748a07a0b64 ("PCI: Remove legacy pcim_release()"), this problem is exposed and triggers the warining below. [224.010735] proc_thermal_pci 0000:00:04.0: disabling already-disabled device [224.010747] WARNING: CPU: 8 PID: 4442 at drivers/pci/pci.c:2250 pci_disable_device+0xe5/0x100 ... [224.010844] Call Trace: [224.010845]<TASK> [224.010847]? show_regs+0x6d/0x80 [224.010851]? __warn+0x8c/0x140 [224.010854]? pci_disable_device+0xe5/0x100 [224.010856]? report_bug+0x1c9/0x1e0 [224.010859]? handle_bug+0x46/0x80 [224.010862]? exc_invalid_op+0x1d/0x80 [224.010863]? asm_exc_invalid_op+0x1f/0x30 [224.010867]? pci_disable_device+0xe5/0x100 [224.010869]? pci_disable_device+0xe5/0x100 [224.010871]? kfree+0x21a/0x2b0 [224.010873]pcim_disable_device+0x20/0x30 [224.010875]devm_action_release+0x16/0x20 [224.010878]release_nodes+0x47/0xc0 [224.010880]devres_release_all+0x9f/0xe0 [224.010883]device_unbind_cleanup+0x12/0x80 [224.010885]device_release_driver_internal+0x1ca/0x210 [224.010887]driver_detach+0x4e/0xa0 [224.010889]bus_remove_driver+0x6f/0xf0 [224.010890]driver_unregister+0x35/0x60 [224.010892]pci_unregister_driver+0x44/0x90 [224.010894]proc_thermal_pci_driver_exit+0x14/0x5f0 [processor_thermal_device_pci] ... [224.010921] ---[ end trace 0000000000000000 ]--- Remove the excess pci_disable_device() calls. [ rjw: Subject and changelog edits ] Solution(s) ubuntu-upgrade-linux-image-5-15-0-1039-xilinx-zynqmp ubuntu-upgrade-linux-image-5-15-0-1056-gkeop ubuntu-upgrade-linux-image-5-15-0-1066-ibm ubuntu-upgrade-linux-image-5-15-0-1066-raspi ubuntu-upgrade-linux-image-5-15-0-1068-nvidia ubuntu-upgrade-linux-image-5-15-0-1068-nvidia-lowlatency ubuntu-upgrade-linux-image-5-15-0-1070-gke ubuntu-upgrade-linux-image-5-15-0-1070-kvm ubuntu-upgrade-linux-image-5-15-0-1071-intel-iotg ubuntu-upgrade-linux-image-5-15-0-1071-oracle ubuntu-upgrade-linux-image-5-15-0-1072-gcp ubuntu-upgrade-linux-image-5-15-0-1073-aws ubuntu-upgrade-linux-image-5-15-0-1078-azure ubuntu-upgrade-linux-image-5-15-0-127-generic ubuntu-upgrade-linux-image-5-15-0-127-generic-64k ubuntu-upgrade-linux-image-5-15-0-127-generic-lpae ubuntu-upgrade-linux-image-5-15-0-127-lowlatency ubuntu-upgrade-linux-image-5-15-0-127-lowlatency-64k ubuntu-upgrade-linux-image-aws ubuntu-upgrade-linux-image-aws-lts-22-04 ubuntu-upgrade-linux-image-azure ubuntu-upgrade-linux-image-azure-cvm ubuntu-upgrade-linux-image-azure-lts-22-04 ubuntu-upgrade-linux-image-gcp ubuntu-upgrade-linux-image-gcp-lts-22-04 ubuntu-upgrade-linux-image-generic ubuntu-upgrade-linux-image-generic-64k ubuntu-upgrade-linux-image-generic-64k-hwe-20-04 ubuntu-upgrade-linux-image-generic-hwe-20-04 ubuntu-upgrade-linux-image-generic-lpae ubuntu-upgrade-linux-image-generic-lpae-hwe-20-04 ubuntu-upgrade-linux-image-gke ubuntu-upgrade-linux-image-gke-5-15 ubuntu-upgrade-linux-image-gkeop ubuntu-upgrade-linux-image-gkeop-5-15 ubuntu-upgrade-linux-image-ibm ubuntu-upgrade-linux-image-intel ubuntu-upgrade-linux-image-intel-iotg ubuntu-upgrade-linux-image-kvm ubuntu-upgrade-linux-image-lowlatency ubuntu-upgrade-linux-image-lowlatency-64k ubuntu-upgrade-linux-image-lowlatency-64k-hwe-20-04 ubuntu-upgrade-linux-image-lowlatency-hwe-20-04 ubuntu-upgrade-linux-image-nvidia ubuntu-upgrade-linux-image-nvidia-lowlatency ubuntu-upgrade-linux-image-oem-20-04 ubuntu-upgrade-linux-image-oem-20-04b ubuntu-upgrade-linux-image-oem-20-04c ubuntu-upgrade-linux-image-oem-20-04d ubuntu-upgrade-linux-image-oracle ubuntu-upgrade-linux-image-oracle-lts-22-04 ubuntu-upgrade-linux-image-raspi ubuntu-upgrade-linux-image-raspi-nolpae ubuntu-upgrade-linux-image-virtual ubuntu-upgrade-linux-image-virtual-hwe-20-04 ubuntu-upgrade-linux-image-xilinx-zynqmp References https://attackerkb.com/topics/cve-2024-50093 CVE - 2024-50093 USN-7166-1 USN-7166-2 USN-7166-3 USN-7166-4 USN-7186-1 USN-7186-2 USN-7194-1 View more
  17. Amazon Linux 2023: CVE-2024-50121: Important priority package update for kernel Severity 5 CVSS (AV:L/AC:H/Au:M/C:C/I:N/A:C) Published 11/05/2024 Created 02/05/2025 Added 02/14/2025 Modified 02/14/2025 Description In the Linux kernel, the following vulnerability has been resolved: nfsd: cancel nfsd_shrinker_work using sync mode in nfs4_state_shutdown_net In the normal case, when we excute `echo 0 &gt; /proc/fs/nfsd/threads`, the function `nfs4_state_destroy_net` in `nfs4_state_shutdown_net` will release all resources related to the hashed `nfs4_client`. If the `nfsd_client_shrinker` is running concurrently, the `expire_client` function will first unhash this client and then destroy it. This can lead to the following warning. Additionally, numerous use-after-free errors may occur as well. nfsd_client_shrinker echo 0 &gt; /proc/fs/nfsd/threads expire_clientnfsd_shutdown_net unhash_client... nfs4_state_shutdown_net /* won&apos;t wait shrinker exit */ /* cancel_work(&amp;nn-&gt;nfsd_shrinker_work) * nfsd_file for this/* won&apos;t destroy unhashed client1 */ * client1 still alive nfs4_state_destroy_net */ nfsd_file_cache_shutdown /* trigger warning */ kmem_cache_destroy(nfsd_file_slab) kmem_cache_destroy(nfsd_file_mark_slab) /* release nfsd_file and mark */ __destroy_client ==================================================================== BUG nfsd_file (Not tainted): Objects remaining in nfsd_file on __kmem_cache_shutdown() -------------------------------------------------------------------- CPU: 4 UID: 0 PID: 764 Comm: sh Not tainted 6.12.0-rc3+ #1 dump_stack_lvl+0x53/0x70 slab_err+0xb0/0xf0 __kmem_cache_shutdown+0x15c/0x310 kmem_cache_destroy+0x66/0x160 nfsd_file_cache_shutdown+0xac/0x210 [nfsd] nfsd_destroy_serv+0x251/0x2a0 [nfsd] nfsd_svc+0x125/0x1e0 [nfsd] write_threads+0x16a/0x2a0 [nfsd] nfsctl_transaction_write+0x74/0xa0 [nfsd] vfs_write+0x1a5/0x6d0 ksys_write+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e ==================================================================== BUG nfsd_file_mark (Tainted: GB W ): Objects remaining nfsd_file_mark on __kmem_cache_shutdown() -------------------------------------------------------------------- dump_stack_lvl+0x53/0x70 slab_err+0xb0/0xf0 __kmem_cache_shutdown+0x15c/0x310 kmem_cache_destroy+0x66/0x160 nfsd_file_cache_shutdown+0xc8/0x210 [nfsd] nfsd_destroy_serv+0x251/0x2a0 [nfsd] nfsd_svc+0x125/0x1e0 [nfsd] write_threads+0x16a/0x2a0 [nfsd] nfsctl_transaction_write+0x74/0xa0 [nfsd] vfs_write+0x1a5/0x6d0 ksys_write+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e To resolve this issue, cancel `nfsd_shrinker_work` using synchronous mode in nfs4_state_shutdown_net. Solution(s) amazon-linux-2023-upgrade-bpftool amazon-linux-2023-upgrade-bpftool-debuginfo amazon-linux-2023-upgrade-kernel amazon-linux-2023-upgrade-kernel-debuginfo amazon-linux-2023-upgrade-kernel-debuginfo-common-aarch64 amazon-linux-2023-upgrade-kernel-debuginfo-common-x86-64 amazon-linux-2023-upgrade-kernel-devel amazon-linux-2023-upgrade-kernel-headers amazon-linux-2023-upgrade-kernel-libbpf amazon-linux-2023-upgrade-kernel-libbpf-devel amazon-linux-2023-upgrade-kernel-libbpf-static amazon-linux-2023-upgrade-kernel-livepatch-6-1-124-134-200 amazon-linux-2023-upgrade-kernel-modules-extra amazon-linux-2023-upgrade-kernel-modules-extra-common amazon-linux-2023-upgrade-kernel-tools amazon-linux-2023-upgrade-kernel-tools-debuginfo amazon-linux-2023-upgrade-kernel-tools-devel amazon-linux-2023-upgrade-perf amazon-linux-2023-upgrade-perf-debuginfo amazon-linux-2023-upgrade-python3-perf amazon-linux-2023-upgrade-python3-perf-debuginfo References https://attackerkb.com/topics/cve-2024-50121 CVE - 2024-50121 https://alas.aws.amazon.com/AL2023/ALAS-2025-809.html
  18. Alma Linux: CVE-2024-50099: Moderate: kernel security update (Multiple Advisories) Severity 5 CVSS (AV:L/AC:L/Au:S/C:N/I:N/A:C) Published 11/05/2024 Created 12/20/2024 Added 12/19/2024 Modified 01/28/2025 Description In the Linux kernel, the following vulnerability has been resolved: arm64: probes: Remove broken LDR (literal) uprobe support The simulate_ldr_literal() and simulate_ldrsw_literal() functions are unsafe to use for uprobes. Both functions were originally written for use with kprobes, and access memory with plain C accesses. When uprobes was added, these were reused unmodified even though they cannot safely access user memory. There are three key problems: 1) The plain C accesses do not have corresponding extable entries, and thus if they encounter a fault the kernel will treat these as unintentional accesses to user memory, resulting in a BUG() which will kill the kernel thread, and likely lead to further issues (e.g. lockup or panic()). 2) The plain C accesses are subject to HW PAN and SW PAN, and so when either is in use, any attempt to simulate an access to user memory will fault. Thus neither simulate_ldr_literal() nor simulate_ldrsw_literal() can do anything useful when simulating a user instruction on any system with HW PAN or SW PAN. 3) The plain C accesses are privileged, as they run in kernel context, and in practice can access a small range of kernel virtual addresses. The instructions they simulate have a range of +/-1MiB, and since the simulated instructions must itself be a user instructions in the TTBR0 address range, these can address the final 1MiB of the TTBR1 acddress range by wrapping downwards from an address in the first 1MiB of the TTBR0 address range. In contemporary kernels the last 8MiB of TTBR1 address range is reserved, and accesses to this will always fault, meaning this is no worse than (1). Historically, it was theoretically possible for the linear map or vmemmap to spill into the final 8MiB of the TTBR1 address range, but in practice this is extremely unlikely to occur as this would require either: * Having enough physical memory to fill the entire linear map all the way to the final 1MiB of the TTBR1 address range. * Getting unlucky with KASLR randomization of the linear map such that the populated region happens to overlap with the last 1MiB of the TTBR address range. ... and in either case if we were to spill into the final page there would be larger problems as the final page would alias with error pointers. Practically speaking, (1) and (2) are the big issues. Given there have been no reports of problems since the broken code was introduced, it appears that no-one is relying on probing these instructions with uprobes. Avoid these issues by not allowing uprobes on LDR (literal) and LDRSW (literal), limiting the use of simulate_ldr_literal() and simulate_ldrsw_literal() to kprobes. Attempts to place uprobes on LDR (literal) and LDRSW (literal) will be rejected as arm_probe_decode_insn() will return INSN_REJECTED. In future we can consider introducing working uprobes support for these instructions, but this will require more significant work. Solution(s) alma-upgrade-bpftool alma-upgrade-kernel alma-upgrade-kernel-64k alma-upgrade-kernel-64k-core alma-upgrade-kernel-64k-debug alma-upgrade-kernel-64k-debug-core alma-upgrade-kernel-64k-debug-devel alma-upgrade-kernel-64k-debug-devel-matched alma-upgrade-kernel-64k-debug-modules alma-upgrade-kernel-64k-debug-modules-core alma-upgrade-kernel-64k-debug-modules-extra alma-upgrade-kernel-64k-devel alma-upgrade-kernel-64k-devel-matched alma-upgrade-kernel-64k-modules alma-upgrade-kernel-64k-modules-core alma-upgrade-kernel-64k-modules-extra alma-upgrade-kernel-abi-stablelists alma-upgrade-kernel-core alma-upgrade-kernel-cross-headers alma-upgrade-kernel-debug alma-upgrade-kernel-debug-core alma-upgrade-kernel-debug-devel alma-upgrade-kernel-debug-devel-matched alma-upgrade-kernel-debug-modules alma-upgrade-kernel-debug-modules-core alma-upgrade-kernel-debug-modules-extra alma-upgrade-kernel-debug-uki-virt alma-upgrade-kernel-devel alma-upgrade-kernel-devel-matched alma-upgrade-kernel-doc alma-upgrade-kernel-headers alma-upgrade-kernel-modules alma-upgrade-kernel-modules-core alma-upgrade-kernel-modules-extra alma-upgrade-kernel-rt alma-upgrade-kernel-rt-core alma-upgrade-kernel-rt-debug alma-upgrade-kernel-rt-debug-core alma-upgrade-kernel-rt-debug-devel alma-upgrade-kernel-rt-debug-modules alma-upgrade-kernel-rt-debug-modules-core alma-upgrade-kernel-rt-debug-modules-extra alma-upgrade-kernel-rt-devel alma-upgrade-kernel-rt-modules alma-upgrade-kernel-rt-modules-core alma-upgrade-kernel-rt-modules-extra alma-upgrade-kernel-tools alma-upgrade-kernel-tools-libs alma-upgrade-kernel-tools-libs-devel alma-upgrade-kernel-uki-virt alma-upgrade-kernel-uki-virt-addons alma-upgrade-kernel-zfcpdump alma-upgrade-kernel-zfcpdump-core alma-upgrade-kernel-zfcpdump-devel alma-upgrade-kernel-zfcpdump-devel-matched alma-upgrade-kernel-zfcpdump-modules alma-upgrade-kernel-zfcpdump-modules-core alma-upgrade-kernel-zfcpdump-modules-extra alma-upgrade-libperf alma-upgrade-perf alma-upgrade-python3-perf alma-upgrade-rtla alma-upgrade-rv References https://attackerkb.com/topics/cve-2024-50099 CVE - 2024-50099 https://errata.almalinux.org/8/ALSA-2024-10943.html https://errata.almalinux.org/8/ALSA-2024-10944.html https://errata.almalinux.org/9/ALSA-2024-11486.html
  19. Alma Linux: CVE-2024-50125: Moderate: kernel security update (ALSA-2024-11486) Severity 7 CVSS (AV:L/AC:L/Au:S/C:C/I:C/A:C) Published 11/05/2024 Created 01/15/2025 Added 01/14/2025 Modified 01/28/2025 Description In the Linux kernel, the following vulnerability has been resolved: Bluetooth: SCO: Fix UAF on sco_sock_timeout conn->sk maybe have been unlinked/freed while waiting for sco_conn_lock so this checks if the conn->sk is still valid by checking if it part of sco_sk_list. Solution(s) alma-upgrade-bpftool alma-upgrade-kernel alma-upgrade-kernel-64k alma-upgrade-kernel-64k-core alma-upgrade-kernel-64k-debug alma-upgrade-kernel-64k-debug-core alma-upgrade-kernel-64k-debug-devel alma-upgrade-kernel-64k-debug-devel-matched alma-upgrade-kernel-64k-debug-modules alma-upgrade-kernel-64k-debug-modules-core alma-upgrade-kernel-64k-debug-modules-extra alma-upgrade-kernel-64k-devel alma-upgrade-kernel-64k-devel-matched alma-upgrade-kernel-64k-modules alma-upgrade-kernel-64k-modules-core alma-upgrade-kernel-64k-modules-extra alma-upgrade-kernel-abi-stablelists alma-upgrade-kernel-core alma-upgrade-kernel-cross-headers alma-upgrade-kernel-debug alma-upgrade-kernel-debug-core alma-upgrade-kernel-debug-devel alma-upgrade-kernel-debug-devel-matched alma-upgrade-kernel-debug-modules alma-upgrade-kernel-debug-modules-core alma-upgrade-kernel-debug-modules-extra alma-upgrade-kernel-debug-uki-virt alma-upgrade-kernel-devel alma-upgrade-kernel-devel-matched alma-upgrade-kernel-doc alma-upgrade-kernel-headers alma-upgrade-kernel-modules alma-upgrade-kernel-modules-core alma-upgrade-kernel-modules-extra alma-upgrade-kernel-rt alma-upgrade-kernel-rt-core alma-upgrade-kernel-rt-debug alma-upgrade-kernel-rt-debug-core alma-upgrade-kernel-rt-debug-devel alma-upgrade-kernel-rt-debug-modules alma-upgrade-kernel-rt-debug-modules-core alma-upgrade-kernel-rt-debug-modules-extra alma-upgrade-kernel-rt-devel alma-upgrade-kernel-rt-modules alma-upgrade-kernel-rt-modules-core alma-upgrade-kernel-rt-modules-extra alma-upgrade-kernel-tools alma-upgrade-kernel-tools-libs alma-upgrade-kernel-tools-libs-devel alma-upgrade-kernel-uki-virt alma-upgrade-kernel-uki-virt-addons alma-upgrade-kernel-zfcpdump alma-upgrade-kernel-zfcpdump-core alma-upgrade-kernel-zfcpdump-devel alma-upgrade-kernel-zfcpdump-devel-matched alma-upgrade-kernel-zfcpdump-modules alma-upgrade-kernel-zfcpdump-modules-core alma-upgrade-kernel-zfcpdump-modules-extra alma-upgrade-libperf alma-upgrade-perf alma-upgrade-python3-perf alma-upgrade-rtla alma-upgrade-rv References https://attackerkb.com/topics/cve-2024-50125 CVE - 2024-50125 https://errata.almalinux.org/9/ALSA-2024-11486.html
  20. Ubuntu: (Multiple Advisories) (CVE-2024-50095): Linux kernel vulnerabilities Severity 5 CVSS (AV:L/AC:L/Au:S/C:N/I:N/A:C) Published 11/05/2024 Created 12/19/2024 Added 12/18/2024 Modified 01/28/2025 Description In the Linux kernel, the following vulnerability has been resolved: RDMA/mad: Improve handling of timed out WRs of mad agent Current timeout handler of mad agent acquires/releases mad_agent_priv lock for every timed out WRs. This causes heavy locking contention when higher no. of WRs are to be handled inside timeout handler. This leads to softlockup with below trace in some use cases where rdma-cm path is used to establish connection between peer nodes Trace: ----- BUG: soft lockup - CPU#4 stuck for 26s! [kworker/u128:3:19767] CPU: 4 PID: 19767 Comm: kworker/u128:3 Kdump: loaded Tainted: G OE ----------5.14.0-427.13.1.el9_4.x86_64 #1 Hardware name: Dell Inc. PowerEdge R740/01YM03, BIOS 2.4.8 11/26/2019 Workqueue: ib_mad1 timeout_sends [ib_core] RIP: 0010:__do_softirq+0x78/0x2ac RSP: 0018:ffffb253449e4f98 EFLAGS: 00000246 RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 000000000000001f RDX: 000000000000001d RSI: 000000003d1879ab RDI: fff363b66fd3a86b RBP: ffffb253604cbcd8 R08: 0000009065635f3b R09: 0000000000000000 R10: 0000000000000040 R11: ffffb253449e4ff8 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000040 FS:0000000000000000(0000) GS:ffff8caa1fc80000(0000) knlGS:0000000000000000 CS:0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fd9ec9db900 CR3: 0000000891934006 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? show_trace_log_lvl+0x1c4/0x2df ? show_trace_log_lvl+0x1c4/0x2df ? __irq_exit_rcu+0xa1/0xc0 ? watchdog_timer_fn+0x1b2/0x210 ? __pfx_watchdog_timer_fn+0x10/0x10 ? __hrtimer_run_queues+0x127/0x2c0 ? hrtimer_interrupt+0xfc/0x210 ? __sysvec_apic_timer_interrupt+0x5c/0x110 ? sysvec_apic_timer_interrupt+0x37/0x90 ? asm_sysvec_apic_timer_interrupt+0x16/0x20 ? __do_softirq+0x78/0x2ac ? __do_softirq+0x60/0x2ac __irq_exit_rcu+0xa1/0xc0 sysvec_call_function_single+0x72/0x90 </IRQ> <TASK> asm_sysvec_call_function_single+0x16/0x20 RIP: 0010:_raw_spin_unlock_irq+0x14/0x30 RSP: 0018:ffffb253604cbd88 EFLAGS: 00000247 RAX: 000000000001960d RBX: 0000000000000002 RCX: ffff8cad2a064800 RDX: 000000008020001b RSI: 0000000000000001 RDI: ffff8cad5d39f66c RBP: ffff8cad5d39f600 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8caa443e0c00 R11: ffffb253604cbcd8 R12: ffff8cacb8682538 R13: 0000000000000005 R14: ffffb253604cbd90 R15: ffff8cad5d39f66c cm_process_send_error+0x122/0x1d0 [ib_cm] timeout_sends+0x1dd/0x270 [ib_core] process_one_work+0x1e2/0x3b0 ? __pfx_worker_thread+0x10/0x10 worker_thread+0x50/0x3a0 ? __pfx_worker_thread+0x10/0x10 kthread+0xdd/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x50 </TASK> Simplified timeout handler by creating local list of timed out WRs and invoke send handler post creating the list. The new method acquires/ releases lock once to fetch the list and hence helps to reduce locking contetiong when processing higher no. of WRs Solution(s) ubuntu-upgrade-linux-image-5-15-0-1039-xilinx-zynqmp ubuntu-upgrade-linux-image-5-15-0-1056-gkeop ubuntu-upgrade-linux-image-5-15-0-1066-ibm ubuntu-upgrade-linux-image-5-15-0-1066-raspi ubuntu-upgrade-linux-image-5-15-0-1068-nvidia ubuntu-upgrade-linux-image-5-15-0-1068-nvidia-lowlatency ubuntu-upgrade-linux-image-5-15-0-1070-gke ubuntu-upgrade-linux-image-5-15-0-1070-kvm ubuntu-upgrade-linux-image-5-15-0-1071-intel-iotg ubuntu-upgrade-linux-image-5-15-0-1071-oracle ubuntu-upgrade-linux-image-5-15-0-1072-gcp ubuntu-upgrade-linux-image-5-15-0-1073-aws ubuntu-upgrade-linux-image-5-15-0-1078-azure ubuntu-upgrade-linux-image-5-15-0-127-generic ubuntu-upgrade-linux-image-5-15-0-127-generic-64k ubuntu-upgrade-linux-image-5-15-0-127-generic-lpae ubuntu-upgrade-linux-image-5-15-0-127-lowlatency ubuntu-upgrade-linux-image-5-15-0-127-lowlatency-64k ubuntu-upgrade-linux-image-aws ubuntu-upgrade-linux-image-aws-lts-22-04 ubuntu-upgrade-linux-image-azure ubuntu-upgrade-linux-image-azure-cvm ubuntu-upgrade-linux-image-azure-lts-22-04 ubuntu-upgrade-linux-image-gcp ubuntu-upgrade-linux-image-gcp-lts-22-04 ubuntu-upgrade-linux-image-generic ubuntu-upgrade-linux-image-generic-64k ubuntu-upgrade-linux-image-generic-64k-hwe-20-04 ubuntu-upgrade-linux-image-generic-hwe-20-04 ubuntu-upgrade-linux-image-generic-lpae ubuntu-upgrade-linux-image-generic-lpae-hwe-20-04 ubuntu-upgrade-linux-image-gke ubuntu-upgrade-linux-image-gke-5-15 ubuntu-upgrade-linux-image-gkeop ubuntu-upgrade-linux-image-gkeop-5-15 ubuntu-upgrade-linux-image-ibm ubuntu-upgrade-linux-image-intel ubuntu-upgrade-linux-image-intel-iotg ubuntu-upgrade-linux-image-kvm ubuntu-upgrade-linux-image-lowlatency ubuntu-upgrade-linux-image-lowlatency-64k ubuntu-upgrade-linux-image-lowlatency-64k-hwe-20-04 ubuntu-upgrade-linux-image-lowlatency-hwe-20-04 ubuntu-upgrade-linux-image-nvidia ubuntu-upgrade-linux-image-nvidia-lowlatency ubuntu-upgrade-linux-image-oem-20-04 ubuntu-upgrade-linux-image-oem-20-04b ubuntu-upgrade-linux-image-oem-20-04c ubuntu-upgrade-linux-image-oem-20-04d ubuntu-upgrade-linux-image-oracle ubuntu-upgrade-linux-image-oracle-lts-22-04 ubuntu-upgrade-linux-image-raspi ubuntu-upgrade-linux-image-raspi-nolpae ubuntu-upgrade-linux-image-virtual ubuntu-upgrade-linux-image-virtual-hwe-20-04 ubuntu-upgrade-linux-image-xilinx-zynqmp References https://attackerkb.com/topics/cve-2024-50095 CVE - 2024-50095 USN-7166-1 USN-7166-2 USN-7166-3 USN-7166-4 USN-7186-1 USN-7186-2 USN-7194-1 View more
  21. Amazon Linux AMI 2: CVE-2024-50131: Security patch for kernel (Multiple Advisories) Severity 7 CVSS (AV:L/AC:L/Au:S/C:C/I:C/A:C) Published 11/05/2024 Created 01/23/2025 Added 01/22/2025 Modified 01/28/2025 Description In the Linux kernel, the following vulnerability has been resolved: tracing: Consider the NULL character when validating the event length strlen() returns a string length excluding the null byte. If the string length equals to the maximum buffer length, the buffer will have no space for the NULL terminating character. This commit checks this condition and returns failure for it. Solution(s) amazon-linux-ami-2-upgrade-bpftool amazon-linux-ami-2-upgrade-bpftool-debuginfo amazon-linux-ami-2-upgrade-kernel amazon-linux-ami-2-upgrade-kernel-debuginfo amazon-linux-ami-2-upgrade-kernel-debuginfo-common-aarch64 amazon-linux-ami-2-upgrade-kernel-debuginfo-common-x86_64 amazon-linux-ami-2-upgrade-kernel-devel amazon-linux-ami-2-upgrade-kernel-headers amazon-linux-ami-2-upgrade-kernel-livepatch-5-10-230-223-885 amazon-linux-ami-2-upgrade-kernel-livepatch-5-15-173-118-169 amazon-linux-ami-2-upgrade-kernel-tools amazon-linux-ami-2-upgrade-kernel-tools-debuginfo amazon-linux-ami-2-upgrade-kernel-tools-devel amazon-linux-ami-2-upgrade-perf amazon-linux-ami-2-upgrade-perf-debuginfo amazon-linux-ami-2-upgrade-python-perf amazon-linux-ami-2-upgrade-python-perf-debuginfo References https://attackerkb.com/topics/cve-2024-50131 AL2/ALASKERNEL-5.10-2025-078 AL2/ALASKERNEL-5.15-2025-060 AL2/ALASKERNEL-5.4-2025-090 CVE - 2024-50131
  22. Amazon Linux AMI 2: CVE-2024-50127: Security patch for kernel (Multiple Advisories) Severity 7 CVSS (AV:L/AC:L/Au:S/C:C/I:C/A:C) Published 11/05/2024 Created 01/23/2025 Added 01/22/2025 Modified 01/30/2025 Description In the Linux kernel, the following vulnerability has been resolved: net: sched: fix use-after-free in taprio_change() In 'taprio_change()', 'admin' pointer may become dangling due to sched switch / removal caused by 'advance_sched()', and critical section protected by 'q->current_entry_lock' is too small to prevent from such a scenario (which causes use-after-free detected by KASAN). Fix this by prefer 'rcu_replace_pointer()' over 'rcu_assign_pointer()' to update 'admin' immediately before an attempt to schedule freeing. Solution(s) amazon-linux-ami-2-upgrade-bpftool amazon-linux-ami-2-upgrade-bpftool-debuginfo amazon-linux-ami-2-upgrade-kernel amazon-linux-ami-2-upgrade-kernel-debuginfo amazon-linux-ami-2-upgrade-kernel-debuginfo-common-aarch64 amazon-linux-ami-2-upgrade-kernel-debuginfo-common-x86_64 amazon-linux-ami-2-upgrade-kernel-devel amazon-linux-ami-2-upgrade-kernel-headers amazon-linux-ami-2-upgrade-kernel-livepatch-5-10-230-223-885 amazon-linux-ami-2-upgrade-kernel-livepatch-5-15-173-118-169 amazon-linux-ami-2-upgrade-kernel-tools amazon-linux-ami-2-upgrade-kernel-tools-debuginfo amazon-linux-ami-2-upgrade-kernel-tools-devel amazon-linux-ami-2-upgrade-perf amazon-linux-ami-2-upgrade-perf-debuginfo amazon-linux-ami-2-upgrade-python-perf amazon-linux-ami-2-upgrade-python-perf-debuginfo References https://attackerkb.com/topics/cve-2024-50127 AL2/ALASKERNEL-5.10-2025-078 AL2/ALASKERNEL-5.15-2025-060 AL2/ALASKERNEL-5.4-2025-090 CVE - 2024-50127
  23. Amazon Linux AMI 2: CVE-2024-50128: Security patch for kernel (ALASKERNEL-5.15-2025-060) Severity 6 CVSS (AV:L/AC:L/Au:S/C:C/I:N/A:C) Published 11/05/2024 Created 01/23/2025 Added 01/22/2025 Modified 01/30/2025 Description In the Linux kernel, the following vulnerability has been resolved: net: wwan: fix global oob in wwan_rtnl_policy The variable wwan_rtnl_link_ops assign a *bigger* maxtype which leads to a global out-of-bounds read when parsing the netlink attributes. Exactly same bug cause as the oob fixed in commit b33fb5b801c6 ("net: qualcomm: rmnet: fix global oob in rmnet_policy"). ================================================================== BUG: KASAN: global-out-of-bounds in validate_nla lib/nlattr.c:388 [inline] BUG: KASAN: global-out-of-bounds in __nla_validate_parse+0x19d7/0x29a0 lib/nlattr.c:603 Read of size 1 at addr ffffffff8b09cb60 by task syz.1.66276/323862 CPU: 0 PID: 323862 Comm: syz.1.66276 Not tainted 6.1.70 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x177/0x231 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:284 [inline] print_report+0x14f/0x750 mm/kasan/report.c:395 kasan_report+0x139/0x170 mm/kasan/report.c:495 validate_nla lib/nlattr.c:388 [inline] __nla_validate_parse+0x19d7/0x29a0 lib/nlattr.c:603 __nla_parse+0x3c/0x50 lib/nlattr.c:700 nla_parse_nested_deprecated include/net/netlink.h:1269 [inline] __rtnl_newlink net/core/rtnetlink.c:3514 [inline] rtnl_newlink+0x7bc/0x1fd0 net/core/rtnetlink.c:3623 rtnetlink_rcv_msg+0x794/0xef0 net/core/rtnetlink.c:6122 netlink_rcv_skb+0x1de/0x420 net/netlink/af_netlink.c:2508 netlink_unicast_kernel net/netlink/af_netlink.c:1326 [inline] netlink_unicast+0x74b/0x8c0 net/netlink/af_netlink.c:1352 netlink_sendmsg+0x882/0xb90 net/netlink/af_netlink.c:1874 sock_sendmsg_nosec net/socket.c:716 [inline] __sock_sendmsg net/socket.c:728 [inline] ____sys_sendmsg+0x5cc/0x8f0 net/socket.c:2499 ___sys_sendmsg+0x21c/0x290 net/socket.c:2553 __sys_sendmsg net/socket.c:2582 [inline] __do_sys_sendmsg net/socket.c:2591 [inline] __se_sys_sendmsg+0x19e/0x270 net/socket.c:2589 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x45/0x90 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f67b19a24ad RSP: 002b:00007f67b17febb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f67b1b45f80 RCX: 00007f67b19a24ad RDX: 0000000000000000 RSI: 0000000020005e40 RDI: 0000000000000004 RBP: 00007f67b1a1e01d R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007ffd2513764f R14: 00007ffd251376e0 R15: 00007f67b17fed40 </TASK> The buggy address belongs to the variable: wwan_rtnl_policy+0x20/0x40 The buggy address belongs to the physical page: page:ffffea00002c2700 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0xb09c flags: 0xfff00000001000(reserved|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000001000 ffffea00002c2708 ffffea00002c2708 0000000000000000 raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner info is not present (never set?) Memory state around the buggy address: ffffffff8b09ca00: 05 f9 f9 f9 05 f9 f9 f9 00 01 f9 f9 00 01 f9 f9 ffffffff8b09ca80: 00 00 00 05 f9 f9 f9 f9 00 00 03 f9 f9 f9 f9 f9 >ffffffff8b09cb00: 00 00 00 00 05 f9 f9 f9 00 00 00 00 f9 f9 f9 f9 ^ ffffffff8b09cb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== According to the comment of `nla_parse_nested_deprecated`, use correct size `IFLA_WWAN_MAX` here to fix this issue. Solution(s) amazon-linux-ami-2-upgrade-bpftool amazon-linux-ami-2-upgrade-bpftool-debuginfo amazon-linux-ami-2-upgrade-kernel amazon-linux-ami-2-upgrade-kernel-debuginfo amazon-linux-ami-2-upgrade-kernel-debuginfo-common-aarch64 amazon-linux-ami-2-upgrade-kernel-debuginfo-common-x86_64 amazon-linux-ami-2-upgrade-kernel-devel amazon-linux-ami-2-upgrade-kernel-headers amazon-linux-ami-2-upgrade-kernel-livepatch-5-15-173-118-169 amazon-linux-ami-2-upgrade-kernel-tools amazon-linux-ami-2-upgrade-kernel-tools-debuginfo amazon-linux-ami-2-upgrade-kernel-tools-devel amazon-linux-ami-2-upgrade-perf amazon-linux-ami-2-upgrade-perf-debuginfo amazon-linux-ami-2-upgrade-python-perf amazon-linux-ami-2-upgrade-python-perf-debuginfo References https://attackerkb.com/topics/cve-2024-50128 AL2/ALASKERNEL-5.15-2025-060 CVE - 2024-50128
  24. Debian: CVE-2024-50133: linux, linux-6.1 -- security update Severity 5 CVSS (AV:L/AC:L/Au:S/C:N/I:N/A:C) Published 11/05/2024 Created 11/12/2024 Added 11/11/2024 Modified 01/30/2025 Description In the Linux kernel, the following vulnerability has been resolved: LoongArch: Don't crash in stack_top() for tasks without vDSO Not all tasks have a vDSO mapped, for example kthreads never do. If such a task ever ends up calling stack_top(), it will derefence the NULL vdso pointer and crash. This can for example happen when using kunit: [<9000000000203874>] stack_top+0x58/0xa8 [<90000000002956cc>] arch_pick_mmap_layout+0x164/0x220 [<90000000003c284c>] kunit_vm_mmap_init+0x108/0x12c [<90000000003c1fbc>] __kunit_add_resource+0x38/0x8c [<90000000003c2704>] kunit_vm_mmap+0x88/0xc8 [<9000000000410b14>] usercopy_test_init+0xbc/0x25c [<90000000003c1db4>] kunit_try_run_case+0x5c/0x184 [<90000000003c3d54>] kunit_generic_run_threadfn_adapter+0x24/0x48 [<900000000022e4bc>] kthread+0xc8/0xd4 [<9000000000200ce8>] ret_from_kernel_thread+0xc/0xa4 Solution(s) debian-upgrade-linux debian-upgrade-linux-6-1 References https://attackerkb.com/topics/cve-2024-50133 CVE - 2024-50133 DLA-4008-1
  25. Debian: CVE-2024-50116: linux, linux-6.1 -- security update Severity 5 CVSS (AV:L/AC:L/Au:S/C:N/I:N/A:C) Published 11/05/2024 Created 11/12/2024 Added 11/11/2024 Modified 01/30/2025 Description In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix kernel bug due to missing clearing of buffer delay flag Syzbot reported that after nilfs2 reads a corrupted file system image and degrades to read-only, the BUG_ON check for the buffer delay flag in submit_bh_wbc() may fail, causing a kernel bug. This is because the buffer delay flag is not cleared when clearing the buffer state flags to discard a page/folio or a buffer head. So, fix this. This became necessary when the use of nilfs2's own page clear routine was expanded.This state inconsistency does not occur if the buffer is written normally by log writing. Solution(s) debian-upgrade-linux debian-upgrade-linux-6-1 References https://attackerkb.com/topics/cve-2024-50116 CVE - 2024-50116 DLA-4008-1